The q-exponential generating function for permutations by consecutive patterns and inversions
نویسنده
چکیده
The inverse of Fedou’s insertion-shift bijection is used to deduce a general form for the q-exponential generating function for permutations by consecutive patterns (overlaps allowed) and inversion number from a result due to Jackson and Goulden for enumerating words by distinguished factors. Explicit q-exponential generating functions are then derived for permutations by the consecutive patterns 12 . . .m, 12 . . . (m 2)m(m 1), 1m(m 1) . . .2, and by the pair of consecutive patterns (123,132).
منابع مشابه
Using Homological Duality in Consecutive Pattern Avoidance
Using the approach suggested in [2] we present below a sufficient condition guaranteeing that two collections of patterns of permutations have the same exponential generating functions for the number of permutations avoiding elements of these collections as consecutive patterns. In short, the coincidence of the latter generating functions is guaranteed by a length-preserving bijection of patter...
متن کاملGeneralized Worpitzky Identities with Applications to Permutation Enumeration
The enumeration of permutations by inversions often leads to a q-analog of the usual generating 'nnetic,n. In this paper, two generalizations of the Worpitzky identity for the Eulerian numbers are obtained and used to enumerate permutations by the descent number and the major index of their inverses. The resulting (t, q)-generating series do in fact generalize the q-series obtainc? when countin...
متن کاملAVOIDANCE OF PARTIALLY ORDERED PATTERNS OF THE FORM k-σ-k
Sergey Kitaev [4] has shown that the exponential generating function for permutations avoiding the generalized pattern σ-k, where σ is a pattern without dashes and k is one greater than the largest element in σ, is determined by the exponential generating function for permutations avoiding σ. We show that the exponential generating function for permutations avoiding the partially ordered patter...
متن کاملVariations on Descents and Inversions in Permutations
We study new statistics on permutations that are variations on the descent and the inversion statistics. In particular, we consider the alternating descent set of a permutation σ = σ1σ2 · · · σn defined as the set of indices i such that either i is odd and σi > σi+1, or i is even and σi < σi+1. We show that this statistic is equidistributed with the odd 3-factor set statistic on permutations σ̃ ...
متن کاملConsecutive patterns in permutations: clusters and generating functions
We use the cluster method in order to enumerate permutations avoiding consecutive patterns. We reprove and generalize in a unified way several known results and obtain new ones, including some patterns of length 4 and 5, as well as some infinite families of patterns of a given shape. Our main tool is the cluster method of Goulden and Jackson. We also prove some that, for a large class of patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 114 شماره
صفحات -
تاریخ انتشار 2007